
EECS4315 Mission-Critical Systems

Lecture Notes

Winter 2025

Jackie Wang

Lecture 1 - January 6

Syllabus & Introduction

Safety-Critical Systems
Verification vs. Validation
Theorem Proving vs. Model Checking
TLA+

Course Learning Outcomes (CLOs)

General Tips about Success

Source: https://a.co/d/aQ13fR1

Lecture 2 - January 8

Introduction

Lab1 Guidance
Verification vs. Validation
Mission- vs. Safety-Critical Systems

Announcements/Reminders

• Lab1 released
• Scheduled lab session tomorrow at 9am
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Trial attendance check via iClicker today!
• Slides on Math Review (Predicates) posted
• Notes template posted
• Monday lecture venue (R N203) unchanged

• Implementation (Java, Python)
• Requirements Document (Natural Language)
• Validity: Ambiguity, Incompleteness, Contradiction
• Compiler Technology (e.g., ANTLR4 @ EECS4302)

Goals: Verification vs. Validation

Commuting Diagram

Challenge: Incompatible Semantic Domains

Mission-Critical vs. Safety-Critical

Source: http://pdf.cloud.opensystemsmedia.com/advancedtca-systems.com/SBS.Jan04.pdf

Lecture 3 - January 13

Introduction

Software Development Process
Assurance Cases
Correct by Construction
State Space
Counter Problem: Theorem Proving

Announcements/Reminders

• Lab1 released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu

Building the product right? Building the right product?

Software Development Process

- Natural Language
 (incomplete, ambiguous, contradicting)
- Requirement Elicitation

- Blueprints
- Not necessarily executable & testable

- API Given
- Efficient (data structures & algorithms)
- Unit Tests

- Customer’s Acceptance
- Recall?

Source: https://resources.sei.cmu.edu/asset_files/whitepaper/2009_019_001_29066.pdf

Research on “Assurance Cases” if interested!

Certifying Systems: Assurance Cases

Correct by Construction

Source: https://audiobookstore.com/audiobooks/failure-is-not-an-option-1.aspx

m0

m1

m2

Correct by Construction: Bridge Controller System

State Space of a Model
Definition: The state space of a model is
the set of all possible valuations of its declared constants and variables,
subject to declared constraints.

Q1. Give some example configurations of this initial model’s state space.

Q2. How large exactly is this initial model’s state space?

Exercise: Theorem Proving vs. Model Checking

Variable:
An integer counter c

Safety Constraints:
MIN_VALUE <= c <= MAX_VALUE

Unconditional Update:
init: initializes c as zero

Conditional Updates:
inc: increments c when ??
dec: decrements c when ??

Theorem Proving: Deductive Approach via Inference Rules

Lecture 4 - January 15

Introduction, Math Review

Counter Problem: Model Checking
Reachability Graph
Commutativity vs. Short-Circuit Eval.

Announcements/Reminders

• Lab1 released
• TA contact information (on-demand for labs) on eClass
• I will attend tomorrow’s scheduled lab session
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu

Formulate Proof Obligation (PO): inc/inv0_1/INV

Invariant:
MIN_VALUE <= c <= MAX_VALUE

Definition: A reachability graph includes all states reachable,
via occurrences of enabled events, from the initial state.
Q: Given variables, the initial state, and the set of possible events,

how can a RG be automatically generated?

c ==

inc
dec

Model Checking: Algorithmic Approach via Exhaustive Search

c ==

c == c ==

TLA+ Toolbox

Q. Are the ∧ and ∨ operators equivalent to, respectively, && and || in Java?

Logical Operator vs. Programming Operator

Lecture 5 - January 20

Math Review

Formulating the Model Checking Problem
Describing Implications
Theorems of Propositional Logic

Announcements/Reminders

• Lab1 due this Thursday (Jan 23)
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu

Implication ≈ Whether a Contract is Honoured

Describing p ⇒ q

q if p, p is sufficient for q

p only if q, q is necessary for p

q unless ¬p

p: snow storm
q: cancel class

Lecture 6 - January 22

Math Review

∀ vs. ∃: Syntax, Meaning, Examples
∀ vs. ∃: Proof Strategies
Switching between ∀ and ∃

Announcements/Reminders

• Lab1 due tomorrow (Jan 23)
• Lab2 to be released next week (by Monday’s class)
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu

Predicate Logic: Quantifiers

∀ i • R(i) ⇒ P(i)

∃ i • R(i) ∧ P(i)

- syntax
- base cases in programming

Logical Quantifiers: Examples

∀ i • i ∈ ℕ ⇒ i ≥ 0

∀ i • i ∈ ℤ ⇒ i ≥ 0

∀ i, j • i ∈ ℤ ∧ j ∈ ℤ ⇒ i < j ∨ i > j

∃ i • i ∈ ℕ ∧ i ≥ 0

∃ i • i ∈ ℤ ∧ i ≥ 0

∃ i, j • i ∈ ℤ ∧ j ∈ ℤ ∧ (i < j ∨ i > j)

How to prove ∀ i • R(i) ⇒ P(i) ?

How to disprove ∀ i • R(i) ⇒ P(i) ?

How to prove ∃ i • R(i) ∧ P(i) ?

How to disprove ∃ i • R(i) ∧ P(i) ?

Logical Quantifiers: Proof Strategies

Prove/Disprove Logical Quantifications

Logical Quantifications: Conversions

(∀ X • R(X) ⇒ P(X)) ⇔ ¬(∃ X • R(X) ∧ ¬P(X))

(∃ X • R(X) ∧ P(X)) ⇔ ¬(∀ X • R(X) ⇒ ¬P(X))

R(x): x ∈ 4315_class
P(x): x receives A+

De Morgan

Lecture 7 - January 27

Lab1 Review (Part 1), Lab2 Preview

Finite Reachability Graph with Cycles
Atomic Updates with a Single Label
Algo. Contracts: Pre- & Post-condition

Announcements/Reminders

• Lab1 solution released
• Lab2 released
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu

Lab1 Solution Discussion: Roadmap

• Finite Reachability Graph from Unbounded Event Inerleavings
• Atomic vs. Non-Atomic Updates
• Encoding System Variant

Next State Actions
/\ stack = <<>>

/\ n = 0
/\ pc = "loop"

/\ stack = <<>>
/\ n = 0

/\ pc = "choice"

/\ stack = <<>>
/\ n = 0

/\ pc = "ML_out_"

/\ stack = <<>>
/\ n = 0

/\ pc = "ML_in_"

/\ stack = <<>>
/\ n = 0

/\ pc = "call_ML_out"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>
/\ n = 0

/\ pc = "ML_out_action"

/\ stack = <<>>
/\ n = 1

/\ pc = "loop"

/\ stack = <<>>
/\ n = 1

/\ pc = "choice"

/\ stack = <<>>
/\ n = 1

/\ pc = "ML_out_"

/\ stack = <<>>
/\ n = 1

/\ pc = "ML_in_"

/\ stack = <<>>
/\ n = 1

/\ pc = "call_ML_out"

/\ stack = <<>>
/\ n = 1

/\ pc = "call_ML_in"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_in"]>>
/\ n = 1

/\ pc = "ML_in_action"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>
/\ n = 1

/\ pc = "ML_out_action"

/\ stack = <<>>
/\ n = 2

/\ pc = "loop"

/\ stack = <<>>
/\ n = 2

/\ pc = "choice"

/\ stack = <<>>
/\ n = 2

/\ pc = "ML_out_"

/\ stack = <<>>
/\ n = 2

/\ pc = "ML_in_"

/\ stack = <<>>
/\ n = 2

/\ pc = "call_ML_in"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_in"]>>
/\ n = 2

/\ pc = "ML_in_action"

loopcall_ML_inML_in_actionML_in_choicecall_ML_outML_out_actionML_out_

Module: bridgeController_m0_unbounded_interleaving.tla
Model: d = 2

bridgeController_m0_unbounded_interleaving.tla

Lab1 Solution Discussion: Atomic vs. Non-Atomic Updates

Multiple Labels for Procedure Actions

Single Labels for Procedure Actions

inv1_4: a + b + c = n

Lecture 8 - January 29

Lab1 Review (Part 2)

Identifying Atomicity in State Graph
Recall (from EECS3342): System Variant
Encoding & Checking Variant in TLA+

Announcements/Reminders

• Lab1 solution released
• Lab2 released
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu

Next State Actions/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "call_ML_out"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_action_abstract"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "ML_out_action_concrete"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>

IL_in_loopML_out_action_abstractML_in_IL_out_choicecall_ML_outML_out_

Multiple Labels for Procedure Actions

bridgeController_m1_no_variant.tla

Next State Actions/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "call_ML_out"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_action"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "loop"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "choice"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "call_IL_in"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "IL_in_action"
/\ stack = <<[pc |-> "loop", procedure |-> "IL_in"]>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "call_IL_out"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "IL_out_action"
/\ stack = <<[pc |-> "loop", procedure |-> "IL_out"]>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "call_ML_in"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "ML_in_action"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_in"]>>

IL_out_ML_out_actionML_out_IL_in_call_IL_outIL_in_actionloopcall_ML_inML_in_actioncall_IL_inML_in_choicecall_ML_outIL_out_action

Single Labels for Procedure Actions

bridgeController_m1_no_variant.tla

Livelock Caused by New Events Diverging

An alternative m1 (for demonstration)

Use of a Variant to Measure New Events Converging

Variants for New Events: 2 · a + b variant: 2 · a + b

occurrences of
concrete events

<init, ML_out, ML_out, IL_in, IL_in, IL_out, IL_out, ML_in, ML_in >

a =
b =
c =
v =

a =
b =
c =
v =

a =
b =
c =
v =

a =
b =
c =
v =

a =
b =
c =
v =

a =
b =
c =
v =

a =
b =
c =
v =

a =
b =
c =
v =

a =
b =
c =
v =

fixed

PO of Convergence/Non-Divergence/Livelock Freedom

Variant Stays Non-Negative

A New Event Occurrence Decreases Variant

variant: V(c, w)

occurrences of
new events

IL_in/NAT

IL_in/VAR

Variants for New Events: 2 · a + b

------------------------ MODULE bridgeController_m1_variant ------------------------
EXTENDS Integers, Naturals, Sequences, TLC
CONSTANT d
ASSUME /\ d \in Nat
 /\ d > 0
(*
--algorithm bridgeController_m1 {
 variable
 n = 0, a = 0, b = 0, c = 0,
 V_pre = 0, V_post = 0, old_evt_occurred = FALSE, new_evt_occurred = FALSE;

 (*
 Old events: ones that already exist in m0, which is refined by the current m1
 Value of the system variant is always increased or maintained
 by each occurrence of an old event.
 *)
 procedure ML_out() {
 ML_out_action: n := n + 1;
 a := a + 1;
 return;
 }

 procedure ML_in() {
 ML_in_action: n := n - 1;
 c := c - 1;
 return;
 }

 (*
 New events: ones that do not exist in m0, which is refined by the current m1
 Value of the system variant is always decreased
 by each occurrence of a new event event.
 *)
 procedure IL_in() {
 IL_in_action: a := a - 1;
 b := b + 1;
 return;
 }

 procedure IL_out() {
 IL_out_action: b := b - 1;
 c := c + 1;
 return;
 }

 {
 loop: while (TRUE) {
 (* Without the first two updates resetting the event log,
 when new_evt_occurred == true, after the next line,
 V_pre == V_post, which will violate the VAR variant constraint.
 *)
 update_variant_pre: new_evt_occurred := FALSE;
 old_evt_occurred := FALSE;
 V_pre := 2 * a + b;
 choice: either {
 ML_out: if ((n < d) /\ (a + b < d) /\ (c = 0)) {
 call_ML_out: call ML_out();
 update_evt_log_ml_out: new_evt_occurred := FALSE;
 old_evt_occurred := TRUE;
 V_post := 2 * a + b;
 };
 }
 or {

 ML_in: if ((n > 0) /\ (c > 0)) {
 call_ML_in: call ML_in();
 update_evt_log_ml_in: new_evt_occurred := FALSE;
 old_evt_occurred := TRUE;
 V_post := 2 * a + b;
 };
 }
 or {
 IL_in: if (a > 0) {
 call_IL_in: call IL_in();
 update_evt_log_il_in: new_evt_occurred := TRUE;
 old_evt_occurred := FALSE;
 V_post := 2 * a + b;
 };
 }
 or {
 IL_out: if ((b > 0) /\ (a = 0)) {
 call_IL_out: call IL_out();
 update_evt_log_il_out: new_evt_occurred := TRUE;
 old_evt_occurred := FALSE;
 V_post := 2 * a + b;
 };
 };
 }
 }
}
*)
* BEGIN TRANSLATION (chksum(pcal) = "ce02e87c" /\ chksum(tla) = "5f2f5c21")
...
* END TRANSLATION

* checking invariants
inv1_1 == a \in Nat
inv1_2 == b \in Nat
inv1_3 == c \in Nat
inv1_4 == a + b + c = n
inv1_5 == (a = 0) \/ (c = 0)

* checking variants
variants == 2 * a + b >= 0
event_log_consistent == ~(/\ old_evt_occurred = TRUE /\ new_evt_occurred = TRUE)
variant_not_decreased == (old_evt_occurred = TRUE => V_post >= V_pre)
variant_decreased == (new_evt_occurred = TRUE => V_post < V_pre)

* checking deadlock freedom
guard_ML_out == /\ (n < d)
 /\ (a + b < d)
 /\ (c = 0)
guard_ML_in == /\ (n > 0)
 /\ (c > 0)
guard_IL_in == a > 0
guard_IL_out == /\ (b > 0)
 /\ (a = 0)
deadlockfree == guard_ML_out \/ guard_ML_in \/ guard_IL_in \/ guard_IL_out
===

Lecture 9 - February 3

ProgTest1 Guide, Math Review

Implementation Correctness
Completeness of Contracts:

Pre-condition vs. Post-condition

Announcements/Reminders

• ProgTest1 guide released
• Mockup Test scheduled during lab on Thursday, Feb. 6
• Lab1 solution released
• Lab2 released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

Correct Algorithm and Complete Postcondition (1.1)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT input
—— algorithm SomeAlgo {
 variables
 output = …, …
 {
 * Preconditions
 assert Q;

 (* Implementation in PlusCal *)
 Imp.

 * Postcondition 1
 assert R1;
 * Postcondition 2
 assert R2;
 }
}

Q complete?

Correct Algorithm and Complete Postcondition (1.2)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT inputSeq, inputVal
—— algorithm BinarySearch {
 variables
 output = FALSE, …
 {
 * Preconditions
 assert Q;

 (* Implementation in PlusCal *)
 Imp.

 * Postcondition 1
 assert R1;
 * Postcondition 2
 assert R2;
 }
}

Q complete?

Correct Algorithm and Complete Postcondition (2.1)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT input
—— algorithm SomeAlgo {
 variables
 output = …, …
 {
 * Preconditions
 assert Q;

 (* Implementation in PlusCal *)
 Imp.

 * Postcondition 1
 assert R1;
 * Postcondition 2
 assert R2;
 }
}

Imp. correct?

Correct Algorithm and Complete Postcondition (2.2)

Imp. correct?—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT inputSeq, inputVal
—— algorithm BinarySearch {
 variables
 output = FALSE, …
 {
 * Preconditions
 assert /* inputSeq is sorted */;

 (* Implementation in PlusCal *)
 Imp.

 * Postcondition 1
 assert /* inputSeq unchanged */;
 * Postcondition 2
 assert /* output computed correctly */;
 }
}

Correct Algorithm and Complete Postcondition (3.1)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT input
—— algorithm SomeAlgo {
 variables
 output = …, …
 {
 * Preconditions
 assert Q;

 (* Implementation in PlusCal *)
 Imp.

 * Postcondition 1
 assert R1;
 * Postcondition 2
 assert R2;
 }
}

R1 and R2 complete?

Correct Algorithm and Complete Postcondition (3.2)

R1 and R2 complete?—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT inputSeq, inputVal
—— algorithm BinarySearch {
 variables
 output = FALSE, …
 {
 * Preconditions
 assert /* inputSeq is sorted */;

 (* Implementation in PlusCal *)
 Imp.

 * Postcondition 1
 assert R1;
 * Postcondition 2
 assert R2;
 }
}

Predicate Logic: Exercise 1

Consider the following predicate:
∀ x, y • x ∈ ℕ ∧ y ∈ ℕ ⇒ x * y > 0

Choose all statements that are correct.

1. It is a theorem, provable by (5, 4).
2. It is a theorem, provable by (2, 3).
3. It is not a theorem, witnessed by (5, 0).
4. It is not a theorem, witnessed by (12, -2).
5. It is not a theorem, witnessed by (12, 13).

Lecture 10 - February 5

Math Review Exercises, Model Checking

Nested Quantification
Model Checking Intro: ⊢ vs. ⊨
State Graph vs. (Computation) Paths

Announcements/Reminders

• ProgTest1 guide released
• Mockup Test scheduled in tomorrow’s lab session
• Lab1 solution released
• Lab2 released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

Predicate Logic: Exercise 1

Consider the following predicate:
∀ x, y • x ∈ ℕ ∧ y ∈ ℕ ⇒ x * y > 0

Choose all statements that are correct.

1. It is a theorem, provable by (5, 4).
2. It is a theorem, provable by (2, 3).
3. It is not a theorem, witnessed by (5, 0).
4. It is not a theorem, witnessed by (12, -2).
5. It is not a theorem, witnessed by (12, 13).

Predicate Logic: Exercise 2

Consider the following predicate:
∃ x, y • x ∈ ℕ ∧ y ∈ ℕ ∧ x * y > 0

Choose all statements that are correct.

1. It is a theorem, provable by (5, 4).
2. It is a theorem, provable by (2, 3).
3. It is a theorem, provable by (-2, -3).
4. It is not a theorem, witnessed by (5, 0).
5. It is not a theorem, witnessed by (12, -2).
6. It is not a theorem, witnessed by (12, 13).

Nested Logical Quantifiers

∀ i • i ∈ ℤ ⇒ (∃ j • j ∈ ℕ ∧ i + j = 0)

∃ i • i ∈ ℕ ∧ (∀ j • j ∈ ℤ ⇒ i · j > 0)

∀ i • i ∈ ℕ ⇒ (∃ j • j ∈ ℤ ∧ i + j = 0)

∃ i • i ∈ ℕ ∧ (∀ j • j ∈ ℤ ⇒ i · j ≥ 0)

Use of Model Checking in Industry
Pentium FDIV bug: https://en.wikipedia.org/wiki/Pentium_FDIV_bug

Formal Verification: Proof Based vs. Check Based

Lecture 11 - February 10

Lab2 Solution Walkthrough,
Model Checking

Generalizing rounds, Function, Macro
Postconditions: getAllSuffixes
LTL Grammar: Top-Down Derivation

Announcements/Reminders

• ProgTest1 this Thursday during the lab session
+ Please arrange your commute accordingly.
+ Test will only be canceled if the university is closed.

• Practice Test questions and solutions released
• Lab1 and Lab2 solutions released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

Lab2 Solution:
decideRPSGameResult
(Generalizing # of Rounds)

Lab2 Solution:
decideRPSGameResult
(Postcondition)

input: [23, 46, 69]
result:
[[23, 46, 69],
 [46, 69],
 [69]]

Lab2 Solution: getAllSuffixes_v3 (1)

input: [23, 46, 69]
result:
[[23, 46, 69],
 [46, 69],
 [69]]

Lab2 Solution: getAllSuffixes_v3 (2)

LTL Syntax: Context-Free Grammar

Lecture 12 - February 24

Model Checking

Operator Precedence
Parse Trees, LMDs, RMDs

Announcements/Reminders

• ProgTest1 grading started on SUN, Feb 23
+ Expected to get raw results from TAs by MON, Mar 3

• Lab3 to be released
• WrittenTest1 guide to be released
• This week’s office hour: 3pm, Wed
• TA contact information (on-demand for labs) on eClass

Parsing: Some Practical Knowledge

Assumption: Operator precedence considered first before the CFG.

Interpreting a Formula: Parse Trees (1)

F p ∧ G q ⇒ p U r

Interpreting a Formula: Parse Trees (2)

F (p ∧ G q ⇒ p U r)

Interpreting a Formula: Parse Trees (3)

F p ∧ (G q ⇒ p U r)

Interpreting a Formula: Parse Trees (4)

F p ∧ ((G q ⇒ p) U r)

Interpreting a Formula: LMD (1)

F p ∧ G q ⇒ p U r

Interpreting a Formula: LMD (2)
F (p ∧ G q ⇒ p U r)

Interpreting a Formula: LMD (3) F p ∧ (G q ⇒ p U r)

Interpreting a Formula: LMD (4)
F p ∧ ((G q ⇒ p) U r)

Interpreting a Formula: RMD (1) F p ∧ G q ⇒ p U r

Interpreting a Formula: RMD (2) F (p ∧ G q ⇒ p U r)

Interpreting a Formula: RMD (3) F p ∧ (G q ⇒ p U r)

Interpreting a Formula: RMD (4) F p ∧ ((G q ⇒ p) U r)

F p ∧ G q ⇒ p U r

Interpreting a Formula: PT vs. LMD vs. RMD

Deriving Subformulas from a Parse Tree
Enumerate all subformulas of:

F (p ⇒ G r) ∨ ((¬ q) U p)

Lecture 13 - February 26

Model Checking

Subformula
Labeled Transition System (LTS)
Paths, Path Suffixes

Announcements/Reminders

• WrittenTest1 guide & examples by the end of Friday
+ All lectures materials up to and including today
+ Lab1 and Lab2 (solutions & in-class discussion)
+ Review Q&A (Zoom): 7:30pm on Monday, Mar 3

• Lab3 to be released next Wednesday
• Tomorrow’s lab (9 to 10): office hour for your WT1
• This week’s office hour: 3pm, Wed
• TA contact information (on-demand for labs) on eClass

F p ∧ G q ⇒ p U r

Interpreting a Formula: PT vs. LMD vs. RMD

Deriving Subformulas from a Parse Tree
Enumerate all subformulas of:

F (p ⇒ G r) ∨ ((¬ q) U p)

Labelled Transition System (LTS)

M = (S, ⟶, L), given P

Q. Formulate deadlock freedom:
From any state, it is always possible to make progress.

Labelled Transition System (LTS)

c = 0 c = 1 c = 2 c = 3

Labelled Transition System (LTS): Formulation & Paths

Lecture 14 - March 3

Model Checking

Unfolding/Unwinding Paths
Satisfaction Relations: Path vs. Model
Formulations: X, F, G

Announcements/Reminders

• ProgTest1 results to be released (by end of Friday)
• WrittenTest1 guide & examples released
+ Review Q&A (Zoom): 7:30pm on Monday, Mar 3

• Lab3 to be released after WrittenTest1
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

Path Satisfaction: Logical Operations

π ⊨ p
π ⊨ ⊤
π ⊨ ⊥
π ⊨ ¬𝛟
π ⊨ 𝛟1 ∧ 𝛟2
π ⊨ 𝛟1 ∨ 𝛟2
π ⊨ 𝛟1 ⇒ 𝛟2

s1 s2 si-1 si si+1… …

Q: Express that all the
even-numbered states satisfies a proposition p.

A path satisfies a proposition
if its initial state (“current state”) satisfies it.

Slide 33

Path Satisfaction: Temporal Operations (1)

s1 s2 si-1 si si+1… …

A path satisfies X𝛟
if the next state (of the “current state”) satisfies it.

Formulation (over a path)
Q. What is π3 ⊨ X p checking?

Slide 34

Path Satisfaction: Temporal Operations (2)

s1 s2 si-1 si si+1… …

A path satisfies G𝛟
if the every state satisfies it.

Formulation (over a path)

Slide 34

Path Satisfaction: Temporal Operations (3)

s1 s2 si-1 si si+1… …

A path satisfies F𝛟
if some future state satisfies it.

Formulation (over a path)

Slide 34

π ⊨ ⊤
π ⊭ ⊥
π ⊨ p ∧ q
π ⊨ p ∨ q
π ⊨ p ⇒ q
π ⊨ r
π ⊨ r ⇒ p ∧ q ∧ r

Recall: π ⊨ p ⇔ p ∈ L(s1)

Exercise: What if we change the LHS to π²?

Model vs. Path Satisfaction: Exercises (1.1)

Say: π = s0 → s1 → s2 → s2 → …

Slide 36

Review Q & A - Mar. 3

Written Test 1

LTS: Deadlock Freedom

Lecture 15 - March 5

Model Checking

Model Satisfaction
Path vs. Model Satisfactions: X,G, F

Announcements/Reminders

• ProgTest1 results to be released (by end of Friday)
• WrittenTest1 guide & examples released
• Review Q&A materials posted
• Lab3 to be released after WrittenTest1
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

Formulation (over all paths)

Model Satisfaction

Given:
• Model M = (S, ⟶, L)
• State s ∈ S
• LTL Formula 𝛟

M, s ⊨ 𝛟 iff for every path π of M starting at s, π ⊨ 𝛟.

How to prove vs. disprove M, s ⊨ 𝛟?

Slide 35

s0 ⊨ ⊤
s0 ⊭ ⊥
s0 ⊨ p ∧ q
s0 ⊨ p ∨ q
s0 ⊨ p ⇒ q
s0 ⊨ r
s0 ⊨ r ⇒ p ∧ q ∧ r

s ⊨ p ⇔ all π starting at s, π ⊨ p

Exercise: What if we change the LHS to s1?

Model vs. Path Satisfaction: Exercises (1.2)
Slide 36

π ⊨ X ⊤
π ⊭ X ⊥
π ⊨ X (q ∧ r)
π ⊨ X q ∧ r
π ⊨ X (q ⇒ r)
π ⊨ X q ⇒ r

Exercise: What if we change the LHS to π²?

Recall: π ⊨ X 𝛟 ⇔ π² ⊨ 𝛟

Model vs. Path Satisfaction: Exercises (2.1)

Say: π = s0 → s1 → s2 → s2 → …

Slide 37

s0 ⊨ X ⊤
s0 ⊭ X ⊥
s0 ⊨ X (q ∧ r)
s0 ⊨ X q ∧ r
s0 ⊨ X (q ⇒ r)
s0 ⊨ X q ⇒ r

Exercise: What if we change the LHS to s1?

Model vs. Path Satisfaction: Exercises (2.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Slide 37

π ⊨ G ⊤
π ⊭ G ⊥
π ⊨ G ¬(p ∧ r)
π ⊨ G r
π ⊨ G r

Model vs. Path Satisfaction: Exercises (3.1)

π ⊨ G 𝛟 ⇔ ∀ i • i ≥ 1 ⇒ πⁱ ⊨ 𝛟
Say: π = s0 → s1 → s2 → s2 → …

Exercise: What if we change the LHS to π²?

Slide 38

s0 ⊨ G ⊤
s0 ⊭ G ⊥
s0 ⊨ G ¬(p ∧ r)
s0 ⊨ G r
s2 ⊨ G r

Model vs. Path Satisfaction: Exercises (3.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s1?

Slide 38

π ⊨ F ⊤
π ⊭ F ⊥
π ⊨ F ¬(p ∧ r)
π ⊨ F r
π ⊨ F (q ∧ r)

Model vs. Path Satisfaction: Exercises (4.1)

π ⊨ F 𝛟 ⇔ ∃ i • i ≥ 1 ∧ πⁱ ⊨ 𝛟
Say: π = s0 → s1 → s2 → s2 → …

Exercise: What if we change the LHS to π²?

Slide 39

Lecture 16 - March 10

Model Checking

Nesting Temporal Operators: FG𝛟
Exercise: G𝛟 vs. FG𝛟

Announcements/Reminders

• ProgTest1 results & feedback released
+ Submit a regrading request if necessary.

• WT1 results to be released by the end of Friday
• Lab3 released
• Guide for ProgTest2 to be released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

s0 ⊨ F ⊤
s0 ⊭ F ⊥
s0 ⊨ F ¬(p ∧ r)
s0 ⊨ F r
s0 ⊨ F (q ∧ r)

Model vs. Path Satisfaction: Exercises (4.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s1?

Slide 39

Nesting “Global” and “Future” in LTL Formulas

s ⊨ FG 𝛟
Each path starting with s is s.t. eventually, 𝛟 holds continuously.

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Slide 40

s0 ⊨ FG r

s0 ⊨ FG (p ∨ q)

s0 ⊨ FG (p ∨ r)

Model Satisfaction: Exercises (5.1)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

Slide 41

Lecture 17 - March 17

Model Checking

Parsing Property
Exercise: F𝛟 ⇒ FG𝛟
Nesting Temporal Operators: GF𝛟

Announcements/Reminders

• ProgTest2 guide & example questions released
• WrittenTest2 potential shift of date?
• ProgTest1 results & feedback released
+ Submit a regrading request if necessary.

• WT1 results & feedback released
• Lab3 due today
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

Correction: Exercise 2.2 from March 5

Nesting “Global” and “Future” in LTL Formulas

s ⊨ F𝛟1 ⇒ FG𝛟2

Each path π starting with s is s.t. if eventually 𝛟1 holds on π,
then 𝛟2 eventually holds on π continuously.

Q. Formulate the above nested pattern of LTL operators.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Slide 42

Model Satisfaction: Exercises (5.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

s0 ⊨ F (¬q ∨ r) ⇒ FG r

s0 ⊨ F (¬q ∧ r) ⇒ FG r

Slide 43

Nesting “Global” and “Future” in LTL Formulas

s ⊨ GF 𝛟
Each path starting with s is s.t. continuously, 𝛟 eventually holds.

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Slide 44

Lecture 18 - March 19

Model Checking

Nested Temporal Operator: GF𝛟
Exercise: G𝛟 vs. GF𝛟
Exercise: FG𝛟 vs. GF𝛟

Announcements/Reminders

• ProgTest2 focuses on Lab2 (no Lab3).
• WrittenTest2 date remains unchanged.
• ProgTest1 results & feedback released
+ Submit a regrading request if necessary.

• WT1 results & feedback released
• Lab3 solution released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass

Nesting “Global” and “Future” in LTL Formulas

s ⊨ GF 𝛟
Each path starting with s is s.t. continuously, 𝛟 eventually holds.

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Slide 44

s0 ⊨ GF p

s0 ⊨ GF (p ∨ q)

Model Satisfaction: Exercises (6.1)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

Slide 45

s0 ⊨ GF p ⇒ GF r

s0 ⊨ GF r ⇒ GF p

Model Satisfaction: Exercises (6.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

Slide 45

Lecture 19 - March 24

Model Checking

Temporal Operators: U, W, R
Formulating English Sentences in LTL

Announcements/Reminders

• WrittenTest2 this Thursday
• Lab4 to be released
• Office Hour this week: 3pm on Wed, Thu
• TA contact information (on-demand for labs) on eClass

Path Satisfaction: Temporal Operations (4)

s1 s2 si-1 si si+1… …

π |= 𝛟1 U 𝛟2
There is some future state satisfies 𝛟2, and
until then, all states satisfy 𝛟1 .

Formulation (over a path)

Slide 46

Path Satisfaction: Temporal Operations (5)
π |= 𝛟1 W 𝛟2
If there is ever a future state that satisfies 𝛟2, then
until then, all states satisfy 𝛟1.
Or, 𝛟1 must always be the case.

s1 s2 si-1 si si+1… …

Formulation (over a path)

s1 s2 si-1 si si+1… …

Slide 46

Path Satisfaction: Temporal Operations (6)

s1 s2 si-1 si si+1… …

π |= 𝛟1 R 𝛟2
If there is ever a future state that satisfies 𝛟1, then
until then, all states satisfy 𝛟2.
Or, 𝛟2 must always hold (i.e., never released).

Formulation (over a path)

s1 s2 si-1 si si+1… …

Slide 46

Formulating Natural Language in LTL (1)

Natural Language:
I had smoked until I was 22.

Atom t: I was 22
Atom s: I smoke
Q. Is s U t an appropriate formulation?

Slide 50

Formulating Natural Language in LTL (2.1)

Natural Language:
It’s impossible to reach a state
where the system is started but not ready.

Assumed atoms:
- started
- ready

LTL Formulation

Slide 51

Formulating Natural Language in LTL (2.2)

Natural Language:
Whenever a request is made,
it will be acknowledged eventually.

Assumed atoms:
- requested
- acknowledged

LTL Formulation

Slide 51

Formulating Natural Language in LTL (2.3)

Natural Language:
An elevator traveling upwards at the 2nd floor
does not change its direction
when it has passengers wishing to to to the 5th floor.

Assumed atoms:
 - floor2, floor5
- directionUp
- buttonPressed5

LTL Formulation

Slide 51

Lecture 20 - March 26

Model Checking

Exercises: U, W, R
Stronger vs. Weaker Assertions

Announcements/Reminders

• WrittenTest2 this Thursday
• Lab4 to be released
• Office Hour this week: 3pm on Wed, Thu
• TA contact information (on-demand for labs) on eClass

Formulating Natural Language in LTL (1)

Natural Language:
I had smoked until I was 22.

Atom t: I was 22
Atom s: I smoke
Q. Is s U t an appropriate formulation?

Slide 50

Formulating Natural Language in LTL (2.4)

Natural Language:
Whenever a process makes a request, it starts waiting.
As soon as no other process is in the critical region,
the process is granted access to the critical region.

Assumed atoms:
 - requested
- waiting
- granted
- noOneInCs

LTL Formulation

Slide 52

Q. Is starvation freedom guaranteed?

Model Satisfaction: Exercises (7.1)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

s0 ⊨ p U r

s0 ⊨ p W r

s0 ⊨ r R p

Slide 48

Model Satisfaction: Exercises (7.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

s0 ⊨ (p ∨ r) U (p ∧ r)

s0 ⊨ (p ∨ r) W (p ∧ r)

s0 ⊨ (p ∧ r) R (p ∨ r)

Slide 49

Lecture 21 - March 31

Program Verification

Weakest Precond: Predicate Transformer
wp Rules: Assignments, Conditionals

Announcements/Reminders

• WrittenTest2 result released
• Lab4 released
• Bonus opportunity: Final Course Evaluation
• Office Hour this week: 3pm on Mon, Tue, Wed, Thu
• TA contact information (on-demand for labs) on eClass

Stronger vs. Weaker Assertions: Pre- vs. Post-Conditions

Program Correctness: Example (1)

Program Correctness: Example (2)

Hoare Triple: Syntax and Semantics

Hoare Triple as a Predicate

Q
S

Rwp(S, R)

Q

S

R

wp(S, R)

Hoare Triple: Incorrect Program

Program Correctness: Revisiting Example (1)

Q

S

R

wp(S, R)

Program Correctness: Revisiting Example (2)

Q
S

Rwp(S, R)

Expressing Pre-State vs. Post-State Values

Rules of Weakest Precondition: Assignment

 x := e

e.g. x := x + 1

R
e.g. x > 0

wp??

Correctness of Programs: Assignment (1)

Correctness of Programs: Assignment (2)

Rules of Weakest Precondition: Conditionals

wp(if B then S1 else S2 end, R)

Correctness of Programs: Conditionals

Is this program correct?

Lecture 22 - April 2

Program Verification

wp rule: Sequential Composition
Loop Invariant vs. Loop Variant
Correctness Conditions of Loops

Announcements/Reminders

• Exam guide released
• Some example questions to be released by April 7
• WrittenTest2 result released
• Lab4 released
• Bonus opportunity: Final Course Evaluation
• Office Hour this week: 3pm on Wed, Thu
• TA contact information (on-demand for labs) on eClass

wp Calculation for Sequential Composition

Correctness of Programs: Sequential Composition

Correctness of Loops

{ Q }
 Sinit

 while (B) {
 Sbody

 }
{ R }

init It.
1

It.
2 Fina

l It
.

init It.
1

It.
2 Fina

l It
.

Contracts of Loops
Syntax

Runtime Checks

Contracts of Loops: Example

Runtime Checks

Specification

Assume: Q and R are true

end of iteration i I Vpre BVpost

Contracts of Loops: Violations

invariant: 1 <= i <= 5
variant: 5 - i

Runtime Checks

Specification

Assume: Q and R are true

Contracts of Loops: Visualization

Correct Loops: Proof Obligations

Correct Loops: Proof Obligations

Specification

Example

