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Lecture 1 - January 6

Syllabus & Introduction

Safety-Critical Systems
Verification vs. Validation
Theorem Proving vs. Model Checking
TLA+



Course Learning Outcomes (CLOs)





General Tips about Success

Source: https://a.co/d/aQ13fR1





Lecture 2 - January 8

Introduction

Lab1 Guidance
Verification vs. Validation
Mission- vs. Safety-Critical Systems



Announcements/Reminders

• Lab1 released
• Scheduled lab session tomorrow at 9am
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• Trial attendance check via iClicker today!
• Slides on Math Review (Predicates) posted
• Notes template posted
• Monday lecture venue (R N203) unchanged





• Implementation (Java, Python)
• Requirements Document (Natural Language)
• Validity: Ambiguity, Incompleteness, Contradiction
• Compiler Technology (e.g., ANTLR4 @ EECS4302)

Goals: Verification vs. Validation

Commuting Diagram

Challenge: Incompatible Semantic Domains



Mission-Critical vs. Safety-Critical

Source: http://pdf.cloud.opensystemsmedia.com/advancedtca-systems.com/SBS.Jan04.pdf





Lecture 3 - January 13

Introduction

Software Development Process
Assurance Cases
Correct by Construction
State Space
Counter Problem: Theorem Proving



Announcements/Reminders

• Lab1 released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu



Building the product right? Building the right product?



Software Development Process

- Natural Language
  (incomplete, ambiguous, contradicting)
- Requirement Elicitation

- Blueprints
- Not necessarily executable & testable

- API Given
- Efficient (data structures & algorithms)
- Unit Tests

- Customer’s Acceptance
- Recall?



Source: https://resources.sei.cmu.edu/asset_files/whitepaper/2009_019_001_29066.pdf

Research on “Assurance Cases” if interested!

Certifying Systems: Assurance Cases





Correct by Construction

Source: https://audiobookstore.com/audiobooks/failure-is-not-an-option-1.aspx



m0

m1

m2

Correct by Construction: Bridge Controller System



State Space of a Model
Definition: The state space of a model is
the set of all possible valuations of its declared constants and variables, 
subject to declared constraints. 

Q1. Give some example configurations of this initial model’s state space.

Q2. How large exactly is this initial model’s state space?



Exercise: Theorem Proving vs. Model Checking

Variable: 
An integer counter c

Safety Constraints:
MIN_VALUE <= c <= MAX_VALUE

Unconditional Update:
init: initializes c as zero 

Conditional Updates:
inc: increments c when ?? 
dec: decrements c when ?? 



Theorem Proving: Deductive Approach via Inference Rules



Lecture 4 - January 15

Introduction, Math Review

Counter Problem: Model Checking
Reachability Graph
Commutativity vs. Short-Circuit Eval.



Announcements/Reminders

• Lab1 released
• TA contact information (on-demand for labs) on eClass
• I will attend tomorrow’s scheduled lab session
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu



Formulate Proof Obligation (PO): inc/inv0_1/INV





Invariant:
MIN_VALUE <= c <= MAX_VALUE

Definition: A reachability graph includes all states reachable, 
via occurrences of enabled events, from the initial state.
Q: Given variables, the initial state, and the set of possible events, 

how can a RG be automatically generated?

c ==    

inc
dec

Model Checking: Algorithmic Approach via Exhaustive Search

c ==    

c ==    c ==    





TLA+ Toolbox





Q. Are the ∧ and ∨ operators equivalent to, respectively, && and || in Java?

Logical Operator vs. Programming Operator





Lecture 5 - January 20

Math Review

Formulating the Model Checking Problem
Describing Implications
Theorems of Propositional Logic



Announcements/Reminders

• Lab1 due this Thursday (Jan 23)
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu







Implication ≈ Whether a Contract is Honoured



Describing p ⇒ q

q if p, p is sufficient for q

p only if q, q is necessary for p

q unless ¬p

p: snow storm
q: cancel class















Lecture 6 - January 22

Math Review

∀ vs. ∃: Syntax, Meaning, Examples
∀ vs. ∃: Proof Strategies
Switching between ∀ and ∃



Announcements/Reminders

• Lab1 due tomorrow (Jan 23)
• Lab2 to be released next week (by Monday’s class)
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu





Predicate Logic: Quantifiers

∀ i • R(i) ⇒ P(i)

∃ i • R(i) ∧ P(i)

- syntax
- base cases in programming





Logical Quantifiers: Examples

∀ i • i ∈ ℕ ⇒ i ≥ 0

∀ i • i ∈ ℤ ⇒ i ≥ 0

∀ i, j • i ∈ ℤ ∧ j ∈ ℤ ⇒ i < j ∨ i > j

∃ i • i ∈ ℕ ∧ i ≥ 0

∃ i • i ∈ ℤ ∧ i ≥ 0

∃ i, j • i ∈ ℤ ∧ j ∈ ℤ ∧ (i < j ∨ i > j)



How to prove ∀ i • R(i) ⇒ P(i) ?

How to disprove ∀ i • R(i) ⇒ P(i) ?

How to prove ∃ i • R(i) ∧ P(i) ?

How to disprove ∃ i • R(i) ∧ P(i) ?

Logical Quantifiers: Proof Strategies



Prove/Disprove Logical Quantifications





Logical Quantifications: Conversions

( ∀ X • R(X) ⇒ P(X) ) ⇔  ¬( ∃ X • R(X) ∧ ¬P(X) ) 

( ∃ X • R(X) ∧ P(X) ) ⇔  ¬( ∀ X • R(X) ⇒ ¬P(X) )

R(x): x ∈ 4315_class
P(x): x receives A+

De Morgan



Lecture 7 - January 27

Lab1 Review (Part 1), Lab2 Preview

Finite Reachability Graph with Cycles
Atomic Updates with a Single Label
Algo. Contracts: Pre- & Post-condition



Announcements/Reminders

• Lab1 solution released
• Lab2 released
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu



Lab1 Solution Discussion: Roadmap

• Finite Reachability Graph from Unbounded Event Inerleavings
• Atomic vs. Non-Atomic Updates
• Encoding System Variant



Next State Actions
/\ stack = <<>>

/\ n = 0
/\ pc = "loop"

/\ stack = <<>>
/\ n = 0

/\ pc = "choice"

/\ stack = <<>>
/\ n = 0

/\ pc = "ML_out_"

/\ stack = <<>>
/\ n = 0

/\ pc = "ML_in_"

/\ stack = <<>>
/\ n = 0

/\ pc = "call_ML_out"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>
/\ n = 0

/\ pc = "ML_out_action"

/\ stack = <<>>
/\ n = 1

/\ pc = "loop"

/\ stack = <<>>
/\ n = 1

/\ pc = "choice"

/\ stack = <<>>
/\ n = 1

/\ pc = "ML_out_"

/\ stack = <<>>
/\ n = 1

/\ pc = "ML_in_"

/\ stack = <<>>
/\ n = 1

/\ pc = "call_ML_out"

/\ stack = <<>>
/\ n = 1

/\ pc = "call_ML_in"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_in"]>>
/\ n = 1

/\ pc = "ML_in_action"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>
/\ n = 1

/\ pc = "ML_out_action"

/\ stack = <<>>
/\ n = 2

/\ pc = "loop"

/\ stack = <<>>
/\ n = 2

/\ pc = "choice"

/\ stack = <<>>
/\ n = 2

/\ pc = "ML_out_"

/\ stack = <<>>
/\ n = 2

/\ pc = "ML_in_"

/\ stack = <<>>
/\ n = 2

/\ pc = "call_ML_in"

/\ stack = <<[pc |-> "loop", procedure |-> "ML_in"]>>
/\ n = 2

/\ pc = "ML_in_action"

loopcall_ML_inML_in_actionML_in_choicecall_ML_outML_out_actionML_out_

Module: bridgeController_m0_unbounded_interleaving.tla
Model: d = 2

bridgeController_m0_unbounded_interleaving.tla





Lab1 Solution Discussion: Atomic vs. Non-Atomic Updates

Multiple Labels for Procedure Actions

Single Labels for Procedure Actions

inv1_4: a + b + c = n



Lecture 8 - January 29

Lab1 Review (Part 2)

Identifying Atomicity in State Graph
Recall (from EECS3342): System Variant
Encoding & Checking Variant in TLA+



Announcements/Reminders

• Lab1 solution released
• Lab2 released
• TA contact information (on-demand for labs) on eClass
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu



Next State Actions/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "call_ML_out"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_action_abstract"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "ML_out_action_concrete"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>

IL_in_loopML_out_action_abstractML_in_IL_out_choicecall_ML_outML_out_

Multiple Labels for Procedure Actions

bridgeController_m1_no_variant.tla



Next State Actions/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "call_ML_out"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 0
/\ n = 0

/\ pc = "ML_out_action"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_out"]>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "loop"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "choice"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "call_IL_in"
/\ stack = <<>>

/\ a = 1
/\ b = 0
/\ c = 0
/\ n = 1

/\ pc = "IL_in_action"
/\ stack = <<[pc |-> "loop", procedure |-> "IL_in"]>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "call_IL_out"
/\ stack = <<>>

/\ a = 0
/\ b = 1
/\ c = 0
/\ n = 1

/\ pc = "IL_out_action"
/\ stack = <<[pc |-> "loop", procedure |-> "IL_out"]>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "loop"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "choice"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "ML_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "ML_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "IL_in_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "IL_out_"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "call_ML_in"
/\ stack = <<>>

/\ a = 0
/\ b = 0
/\ c = 1
/\ n = 1

/\ pc = "ML_in_action"
/\ stack = <<[pc |-> "loop", procedure |-> "ML_in"]>>

IL_out_ML_out_actionML_out_IL_in_call_IL_outIL_in_actionloopcall_ML_inML_in_actioncall_IL_inML_in_choicecall_ML_outIL_out_action

Single Labels for Procedure Actions

bridgeController_m1_no_variant.tla



Livelock Caused by New Events Diverging

An alternative m1 (for demonstration)





Use of a Variant to Measure New Events Converging

Variants for New Events: 2 · a + b variant: 2 · a + b

occurrences of 
concrete events

<init, ML_out, ML_out, IL_in, IL_in, IL_out, IL_out, ML_in, ML_in >

a = 
b =
c =
v =

a = 
b =
c =
v =

a = 
b =
c = 
v =

a = 
b =
c = 
v =

a = 
b =
c = 
v =

a = 
b =
c = 
v =

a = 
b =
c = 
v =

a = 
b =
c = 
v =

a = 
b =
c = 
v =

fixed



PO of Convergence/Non-Divergence/Livelock Freedom

Variant Stays Non-Negative

A New Event Occurrence Decreases Variant

variant: V(c, w)

occurrences of 
new events

IL_in/NAT

IL_in/VAR

Variants for New Events: 2 · a + b



------------------------ MODULE bridgeController_m1_variant ------------------------
EXTENDS Integers, Naturals, Sequences, TLC
CONSTANT d
ASSUME /\ d \in Nat
       /\ d > 0
(*
--algorithm bridgeController_m1 {
  variable 
    n = 0, a = 0, b = 0, c = 0, 
    V_pre = 0, V_post = 0, old_evt_occurred = FALSE, new_evt_occurred = FALSE;
    
  (* 
     Old events: ones that already exist in m0, which is refined by the current m1
     Value of the system variant is always increased or maintained 
       by each occurrence of an old event.
  *)
  procedure ML_out() {
    ML_out_action: n := n + 1;
                   a := a + 1;
                   return;
  }

  procedure ML_in() {
    ML_in_action: n := n - 1;
                  c := c - 1;
                  return;
  }
  
  (* 
     New events: ones that do not exist in m0, which is refined by the current m1
     Value of the system variant is always decreased
       by each occurrence of a new event event.
  *)
  procedure IL_in() {
    IL_in_action: a := a - 1;
                  b := b + 1;
                  return;
  }
  
  procedure IL_out() {
    IL_out_action: b := b - 1;
                   c := c + 1;
                   return;
  }
    
  {
    loop: while (TRUE) {
      (* Without the first two updates resetting the event log,  
         when new_evt_occurred == true, after the next line, 
         V_pre == V_post, which will violate the VAR variant constraint.
      *)
      update_variant_pre: new_evt_occurred := FALSE;
                          old_evt_occurred := FALSE;
                          V_pre := 2 * a + b; 
      choice: either { 
                ML_out: if ( (n < d) /\ (a + b < d) /\ (c = 0)) { 
                  call_ML_out: call ML_out();  
                  update_evt_log_ml_out: new_evt_occurred := FALSE;
                                         old_evt_occurred := TRUE;
                                         V_post := 2 * a + b;
                };
              }
              or { 



                ML_in: if ( (n > 0) /\ (c > 0) ) { 
                  call_ML_in: call ML_in(); 
                  update_evt_log_ml_in: new_evt_occurred := FALSE;
                                        old_evt_occurred := TRUE;
                                        V_post := 2 * a + b;
                }; 
              }
              or { 
                IL_in: if ( a > 0 ) { 
                  call_IL_in: call IL_in(); 
                  update_evt_log_il_in: new_evt_occurred := TRUE;
                                        old_evt_occurred := FALSE;
                                        V_post := 2 * a + b;
                }; 
              }
              or { 
                IL_out: if ( (b > 0) /\ (a = 0) ) { 
                  call_IL_out: call IL_out(); 
                  update_evt_log_il_out: new_evt_occurred := TRUE;
                                         old_evt_occurred := FALSE;
                                         V_post := 2 * a + b;
                };
              }; 
    }
  }
}
*)
\* BEGIN TRANSLATION (chksum(pcal) = "ce02e87c" /\ chksum(tla) = "5f2f5c21")
...
\* END TRANSLATION 

\* checking invariants
inv1_1 == a \in Nat
inv1_2 == b \in Nat
inv1_3 == c \in Nat
inv1_4 == a + b + c = n
inv1_5 == (a = 0) \/ (c = 0)

\* checking variants
variants == 2 * a + b >= 0
event_log_consistent == ~(/\ old_evt_occurred = TRUE /\ new_evt_occurred = TRUE)
variant_not_decreased == (old_evt_occurred = TRUE => V_post >= V_pre)
variant_decreased == (new_evt_occurred = TRUE => V_post < V_pre)

\* checking deadlock freedom
guard_ML_out == /\ (n < d) 
                /\ (a + b < d) 
                /\ (c = 0)
guard_ML_in == /\ (n > 0) 
               /\ (c > 0)
guard_IL_in == a > 0
guard_IL_out == /\ (b > 0) 
                /\ (a = 0)
deadlockfree == guard_ML_out \/ guard_ML_in \/ guard_IL_in \/ guard_IL_out
=============================================================================



Lecture 9 - February 3

ProgTest1 Guide, Math Review

Implementation Correctness
Completeness of Contracts: 

Pre-condition vs. Post-condition



Announcements/Reminders

• ProgTest1 guide released
• Mockup Test scheduled during lab on Thursday, Feb. 6
• Lab1 solution released
• Lab2 released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass



Correct Algorithm and Complete Postcondition (1.1)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT input
—— algorithm SomeAlgo {
  variables
    output = …, …
  {
    \* Preconditions
    assert Q;

     (* Implementation in PlusCal *)
     Imp. 

    \* Postcondition 1
    assert R1;
    \* Postcondition 2
    assert R2;
  }
}

Q complete?



Correct Algorithm and Complete Postcondition (1.2)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT inputSeq, inputVal
—— algorithm BinarySearch {
  variables
    output = FALSE, …
  {
    \* Preconditions
    assert Q;

     (* Implementation in PlusCal *)
     Imp. 

    \* Postcondition 1
    assert R1;
    \* Postcondition 2
    assert R2;
  }
}

Q complete?



Correct Algorithm and Complete Postcondition (2.1)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT input
—— algorithm SomeAlgo {
  variables
    output = …, …
  {
    \* Preconditions
    assert Q;

     (* Implementation in PlusCal *)
     Imp. 

    \* Postcondition 1
    assert R1;
    \* Postcondition 2
    assert R2;
  }
}

Imp. correct?



Correct Algorithm and Complete Postcondition (2.2)

Imp. correct?—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT inputSeq, inputVal
—— algorithm BinarySearch {
  variables
    output = FALSE, …
  {
    \* Preconditions
    assert /* inputSeq is sorted */;

     (* Implementation in PlusCal *)
     Imp. 

    \* Postcondition 1
    assert /* inputSeq unchanged */;
    \* Postcondition 2
    assert /* output computed correctly */;
  }
}



Correct Algorithm and Complete Postcondition (3.1)
—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT input
—— algorithm SomeAlgo {
  variables
    output = …, …
  {
    \* Preconditions
    assert Q;

     (* Implementation in PlusCal *)
     Imp. 

    \* Postcondition 1
    assert R1;
    \* Postcondition 2
    assert R2;
  }
}

R1 and R2 complete?



Correct Algorithm and Complete Postcondition (3.2)

R1 and R2 complete?—————— MODULE ExampleModule ——————
EXTENDS Integers, Sequences, TLC
CONSTANT inputSeq, inputVal
—— algorithm BinarySearch {
  variables
    output = FALSE, …
  {
    \* Preconditions
    assert /* inputSeq is sorted */;

     (* Implementation in PlusCal *)
     Imp. 

    \* Postcondition 1
    assert R1;
    \* Postcondition 2
    assert R2;
  }
}



Predicate Logic: Exercise 1

Consider the following predicate:
∀ x, y • x ∈ ℕ ∧ y ∈ ℕ ⇒ x * y > 0

Choose all statements that are correct.

1. It is a theorem, provable by (5, 4).
2. It is a theorem, provable by (2, 3).
3. It is not a theorem, witnessed by (5, 0).
4. It is not a theorem, witnessed by (12, -2).
5. It is not a theorem, witnessed by (12, 13).



Lecture 10 - February 5

Math Review Exercises, Model Checking

Nested Quantification
Model Checking Intro: ⊢ vs. ⊨
State Graph vs. (Computation) Paths



Announcements/Reminders

• ProgTest1 guide released
• Mockup Test scheduled in tomorrow’s lab session
• Lab1 solution released
• Lab2 released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass



Predicate Logic: Exercise 1

Consider the following predicate:
∀ x, y • x ∈ ℕ ∧ y ∈ ℕ ⇒ x * y > 0

Choose all statements that are correct.

1. It is a theorem, provable by (5, 4).
2. It is a theorem, provable by (2, 3).
3. It is not a theorem, witnessed by (5, 0).
4. It is not a theorem, witnessed by (12, -2).
5. It is not a theorem, witnessed by (12, 13).



Predicate Logic: Exercise 2

Consider the following predicate:
∃ x, y • x ∈ ℕ ∧ y ∈ ℕ ∧ x * y > 0

Choose all statements that are correct.

1. It is a theorem, provable by (5, 4).
2. It is a theorem, provable by (2, 3).
3. It is a theorem, provable by (-2, -3).
4. It is not a theorem, witnessed by (5, 0).
5. It is not a theorem, witnessed by (12, -2).
6. It is not a theorem, witnessed by (12, 13).



Nested Logical Quantifiers

∀ i • i ∈ ℤ ⇒ (∃ j • j ∈ ℕ ∧ i + j = 0 )

∃ i • i ∈ ℕ ∧ (∀ j • j ∈ ℤ ⇒  i · j > 0)

∀ i • i ∈ ℕ ⇒ (∃ j • j ∈ ℤ ∧ i + j = 0 )

∃ i • i ∈ ℕ ∧  (∀ j • j ∈ ℤ ⇒ i · j ≥ 0 )



Use of Model Checking in Industry
Pentium FDIV bug: https://en.wikipedia.org/wiki/Pentium_FDIV_bug



Formal Verification: Proof Based vs. Check Based







Lecture 11 - February 10

Lab2 Solution Walkthrough,
Model Checking

Generalizing rounds, Function, Macro
Postconditions: getAllSuffixes
LTL Grammar: Top-Down Derivation



Announcements/Reminders

• ProgTest1 this Thursday during the lab session
+ Please arrange your commute accordingly.
+ Test will only be canceled if the university is closed.

• Practice Test questions and solutions released
• Lab1 and Lab2 solutions released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass



Lab2 Solution: 
decideRPSGameResult 
(Generalizing # of Rounds)



Lab2 Solution: 
decideRPSGameResult 
(Postcondition)



input: [23, 46, 69]
result: 
[[23, 46, 69], 
 [46, 69], 
 [69]]

Lab2 Solution: getAllSuffixes_v3 (1)





input: [23, 46, 69]
result: 
[[23, 46, 69], 
 [46, 69], 
 [69]]

Lab2 Solution: getAllSuffixes_v3 (2)



LTL Syntax: Context-Free Grammar





Lecture 12 - February 24

Model Checking

Operator Precedence
Parse Trees, LMDs, RMDs



Announcements/Reminders

• ProgTest1 grading started on SUN, Feb 23
+ Expected to get raw results from TAs by MON, Mar 3

• Lab3 to be released
• WrittenTest1 guide to be released
• This week’s office hour: 3pm, Wed
• TA contact information (on-demand for labs) on eClass







Parsing: Some Practical Knowledge

Assumption: Operator precedence considered first before the CFG.



Interpreting a Formula: Parse Trees (1)

F p ∧ G q ⇒ p U r



Interpreting a Formula: Parse Trees (2)

F (p ∧ G q ⇒ p U r)



Interpreting a Formula: Parse Trees (3)

F p ∧ (G q ⇒ p U r)



Interpreting a Formula: Parse Trees (4)

F p ∧ ((G q ⇒ p) U r)



Interpreting a Formula: LMD (1)

F p ∧ G q ⇒ p U r



Interpreting a Formula: LMD (2)
F (p ∧ G q ⇒ p U r)



Interpreting a Formula: LMD (3) F p ∧ (G q ⇒ p U r)



Interpreting a Formula: LMD (4)
F p ∧ ((G q ⇒ p) U r)



Interpreting a Formula: RMD (1) F p ∧ G q ⇒ p U r



Interpreting a Formula: RMD (2) F (p ∧ G q ⇒ p U r)



Interpreting a Formula: RMD (3) F p ∧ (G q ⇒ p U r)



Interpreting a Formula: RMD (4) F p ∧ ((G q ⇒ p) U r)



F p ∧ G q ⇒ p U r

Interpreting a Formula: PT vs. LMD vs. RMD



Deriving Subformulas from a Parse Tree
Enumerate all subformulas of:

F (p ⇒ G r) ∨ ((¬ q) U p)



Lecture 13 - February 26

Model Checking

Subformula
Labeled Transition System (LTS)
Paths, Path Suffixes



Announcements/Reminders

• WrittenTest1 guide & examples by the end of Friday
+ All lectures materials up to and including today
+ Lab1 and Lab2 (solutions & in-class discussion) 
+ Review Q&A (Zoom): 7:30pm on Monday, Mar 3

• Lab3 to be released next Wednesday
• Tomorrow’s lab (9 to 10): office hour for your WT1
• This week’s office hour: 3pm, Wed
• TA contact information (on-demand for labs) on eClass



F p ∧ G q ⇒ p U r

Interpreting a Formula: PT vs. LMD vs. RMD



Deriving Subformulas from a Parse Tree
Enumerate all subformulas of:

F (p ⇒ G r) ∨ ((¬ q) U p)



Labelled Transition System (LTS)

M = (S, ⟶, L), given P

Q. Formulate deadlock freedom: 
From any state, it is always possible to make progress.



Labelled Transition System (LTS)

c = 0   c = 1 c = 2 c = 3



Labelled Transition System (LTS): Formulation & Paths





Lecture 14 - March 3

Model Checking

Unfolding/Unwinding Paths
Satisfaction Relations: Path vs. Model
Formulations: X, F, G



Announcements/Reminders

• ProgTest1 results to be released (by end of Friday)
• WrittenTest1 guide & examples released
+ Review Q&A (Zoom): 7:30pm on Monday, Mar 3

• Lab3 to be released after WrittenTest1
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass







Path Satisfaction: Logical Operations

π ⊨ p
π ⊨ ⊤  
π ⊨ ⊥  
π ⊨ ¬𝛟 
π ⊨ 𝛟1 ∧ 𝛟2
π ⊨ 𝛟1 ∨ 𝛟2
π ⊨ 𝛟1 ⇒ 𝛟2

s1 s2 si-1 si si+1… …

Q: Express that all the 
even-numbered states satisfies a proposition p. 

A path satisfies a proposition 
if its initial state (“current state”) satisfies it.

Slide 33



Path Satisfaction: Temporal Operations (1)

s1 s2 si-1 si si+1… …

A path satisfies X𝛟 
if the next state (of the “current state”) satisfies it.

Formulation (over a path)
Q. What is π3 ⊨ X p checking?
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Path Satisfaction: Temporal Operations (2)

s1 s2 si-1 si si+1… …

A path satisfies G𝛟 
if the every state satisfies it.

Formulation (over a path)

Slide 34



Path Satisfaction: Temporal Operations (3)

s1 s2 si-1 si si+1… …

A path satisfies F𝛟 
if some future state satisfies it.

Formulation (over a path)

Slide 34



π ⊨ ⊤
π ⊭ ⊥
π ⊨ p ∧ q
π ⊨ p ∨ q
π ⊨ p ⇒ q
π ⊨ r
π ⊨ r ⇒ p ∧ q ∧ r

Recall: π ⊨ p ⇔ p ∈ L(s1)

Exercise: What if we change the LHS to π²?

Model vs. Path Satisfaction: Exercises (1.1)

Say: π = s0 → s1 → s2 → s2 → …
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Review Q & A - Mar. 3

Written Test 1

LTS: Deadlock Freedom





Lecture 15 - March 5

Model Checking

Model Satisfaction
Path vs. Model Satisfactions: X,G, F



Announcements/Reminders

• ProgTest1 results to be released (by end of Friday)
• WrittenTest1 guide & examples released
• Review Q&A materials posted
• Lab3 to be released after WrittenTest1
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass



Formulation (over all paths)

Model Satisfaction

Given:
• Model M = (S, ⟶, L)
• State s ∈ S
• LTL Formula 𝛟 

M, s ⊨ 𝛟 iff for every path π of M starting at s, π ⊨ 𝛟. 

How to prove vs. disprove M, s ⊨ 𝛟?
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s0 ⊨ ⊤
s0 ⊭ ⊥
s0 ⊨ p ∧ q
s0 ⊨ p ∨ q
s0 ⊨ p ⇒ q
s0 ⊨ r
s0 ⊨ r ⇒ p ∧ q ∧ r

s ⊨ p ⇔ all π starting at s, π ⊨ p

Exercise: What if we change the LHS to s1?

Model vs. Path Satisfaction: Exercises (1.2)
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π ⊨ X ⊤
π ⊭ X ⊥
π ⊨ X (q ∧ r)
π ⊨ X q ∧ r
π ⊨ X (q ⇒ r)
π ⊨ X q ⇒ r

Exercise: What if we change the LHS to π²?

Recall: π ⊨ X 𝛟 ⇔ π² ⊨ 𝛟

Model vs. Path Satisfaction: Exercises (2.1)

Say: π = s0 → s1 → s2 → s2 → …
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s0 ⊨ X ⊤
s0 ⊭ X ⊥
s0 ⊨ X (q ∧ r)
s0 ⊨ X q ∧ r
s0 ⊨ X (q ⇒ r)
s0 ⊨ X q ⇒ r

Exercise: What if we change the LHS to s1?

Model vs. Path Satisfaction: Exercises (2.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟
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π ⊨ G ⊤
π ⊭ G ⊥
π ⊨ G ¬(p ∧ r)
π ⊨ G r
π ⊨ G r

Model vs. Path Satisfaction: Exercises (3.1)

π ⊨ G 𝛟 ⇔ ∀ i • i ≥ 1 ⇒ πⁱ ⊨ 𝛟  
Say: π = s0 → s1 → s2 → s2 → …

Exercise: What if we change the LHS to π²?
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s0 ⊨ G ⊤
s0 ⊭ G ⊥
s0 ⊨ G ¬(p ∧ r)
s0 ⊨ G r
s2 ⊨ G r

Model vs. Path Satisfaction: Exercises (3.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s1?
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π ⊨ F ⊤
π ⊭ F ⊥
π ⊨ F ¬(p ∧ r)
π ⊨ F r
π ⊨ F (q ∧ r)

Model vs. Path Satisfaction: Exercises (4.1)

π ⊨ F 𝛟 ⇔ ∃ i • i ≥ 1 ∧ πⁱ ⊨ 𝛟  
Say: π = s0 → s1 → s2 → s2 → …

Exercise: What if we change the LHS to π²?
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Lecture 16 - March 10

Model Checking

Nesting Temporal Operators: FG𝛟 
Exercise: G𝛟 vs. FG𝛟 



Announcements/Reminders

• ProgTest1 results & feedback released
+ Submit a regrading request if necessary.

• WT1 results to be released by the end of Friday
• Lab3 released
• Guide for ProgTest2 to be released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass



s0 ⊨ F ⊤
s0 ⊭ F ⊥
s0 ⊨ F ¬(p ∧ r)
s0 ⊨ F r
s0 ⊨ F (q ∧ r)

Model vs. Path Satisfaction: Exercises (4.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s1?
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Nesting “Global” and “Future” in LTL Formulas

s ⊨ FG 𝛟
Each path starting with s is s.t. eventually, 𝛟 holds continuously. 

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?
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s0 ⊨ FG r

s0 ⊨ FG (p ∨ q)

s0 ⊨ FG (p ∨ r)

Model Satisfaction: Exercises (5.1)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

Slide 41





Lecture 17 - March 17

Model Checking

Parsing Property
Exercise: F𝛟 ⇒  FG𝛟 
Nesting Temporal Operators: GF𝛟 



Announcements/Reminders

• ProgTest2 guide & example questions released
• WrittenTest2 potential shift of date?
• ProgTest1 results & feedback released
+ Submit a regrading request if necessary.

• WT1 results & feedback released
• Lab3 due today
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass



Correction: Exercise 2.2 from March 5







Nesting “Global” and “Future” in LTL Formulas

s ⊨ F𝛟1 ⇒ FG𝛟2

Each path π starting with s is s.t. if eventually 𝛟1 holds on π, 
then 𝛟2 eventually holds on π continuously. 

Q. Formulate the above nested pattern of LTL operators.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?
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Model Satisfaction: Exercises (5.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

s0 ⊨ F (¬q ∨ r) ⇒ FG r

s0 ⊨ F (¬q ∧ r) ⇒ FG r
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Nesting “Global” and “Future” in LTL Formulas

s ⊨ GF 𝛟
Each path starting with s is s.t. continuously, 𝛟 eventually holds. 

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?

Slide 44







Lecture 18 - March 19

Model Checking

Nested Temporal Operator: GF𝛟 
Exercise: G𝛟 vs. GF𝛟 
Exercise: FG𝛟 vs. GF𝛟 



Announcements/Reminders

• ProgTest2 focuses on Lab2 (no Lab3).
• WrittenTest2 date remains unchanged.
• ProgTest1 results & feedback released
+ Submit a regrading request if necessary.

• WT1 results & feedback released
• Lab3 solution released
• Office Hours: 3pm to 4pm, Mon/Tue/Wed/Thu
• TA contact information (on-demand for labs) on eClass



Nesting “Global” and “Future” in LTL Formulas

s ⊨ GF 𝛟
Each path starting with s is s.t. continuously, 𝛟 eventually holds. 

Q. Formulate the above nested pattern of LTL operator.

Q. How to prove the above nested pattern of LTL operators?

Q. How to disprove the above nested pattern of LTL operators?
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s0 ⊨ GF p

s0 ⊨ GF (p ∨ q)

Model Satisfaction: Exercises (6.1)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?
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s0 ⊨ GF p ⇒ GF r

s0 ⊨ GF r ⇒ GF p

Model Satisfaction: Exercises (6.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?
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Lecture 19 - March 24

Model Checking

Temporal Operators: U, W, R
Formulating English Sentences in LTL



Announcements/Reminders

• WrittenTest2 this Thursday
• Lab4 to be released
• Office Hour this week: 3pm on Wed, Thu
• TA contact information (on-demand for labs) on eClass



Path Satisfaction: Temporal Operations (4)

s1 s2 si-1 si si+1… …

π |= 𝛟1 U 𝛟2 
There is some future state satisfies 𝛟2, and 
until then, all states satisfy 𝛟1 .

Formulation (over a path)
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Path Satisfaction: Temporal Operations (5)
π |= 𝛟1 W 𝛟2 
If there is ever a future state that satisfies 𝛟2, then 
until then, all states satisfy 𝛟1. 
Or, 𝛟1 must always be the case.

s1 s2 si-1 si si+1… …

Formulation (over a path)

s1 s2 si-1 si si+1… …
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Path Satisfaction: Temporal Operations (6)

s1 s2 si-1 si si+1… …

π |= 𝛟1 R 𝛟2 
If there is ever a future state that satisfies 𝛟1, then 
until then, all states satisfy 𝛟2. 
Or, 𝛟2 must always hold (i.e., never released).

Formulation (over a path)

s1 s2 si-1 si si+1… …
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Formulating Natural Language in LTL (1)

Natural Language: 
I had smoked until I was 22.

Atom t: I was 22
Atom s: I smoke
Q. Is s U t an appropriate formulation? 
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Formulating Natural Language in LTL (2.1)

Natural Language: 
It’s impossible to reach a state 
where the system is started but not ready.

Assumed atoms:
- started
- ready

LTL Formulation
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Formulating Natural Language in LTL (2.2)

Natural Language: 
Whenever a request is made,
it will be acknowledged eventually.

Assumed atoms:
- requested
- acknowledged

LTL Formulation
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Formulating Natural Language in LTL (2.3)

Natural Language: 
An elevator traveling upwards at the 2nd floor
does not change its direction 
when it has passengers wishing to to to the 5th floor.

Assumed atoms:
  - floor2, floor5
- directionUp
- buttonPressed5

LTL Formulation
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Lecture 20 - March 26

Model Checking

Exercises: U, W, R
Stronger vs. Weaker Assertions



Announcements/Reminders

• WrittenTest2 this Thursday
• Lab4 to be released
• Office Hour this week: 3pm on Wed, Thu
• TA contact information (on-demand for labs) on eClass



Formulating Natural Language in LTL (1)

Natural Language: 
I had smoked until I was 22.

Atom t: I was 22
Atom s: I smoke
Q. Is s U t an appropriate formulation? 
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Formulating Natural Language in LTL (2.4)

Natural Language: 
Whenever a process makes a request, it starts waiting.
As soon as no other process is in the critical region,
the process is granted access to the critical region.

Assumed atoms:
  - requested
- waiting
- granted
- noOneInCs

LTL Formulation

Slide 52

Q. Is starvation freedom guaranteed?



Model Satisfaction: Exercises (7.1)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

s0 ⊨ p U r

s0 ⊨ p W r

s0 ⊨ r R p
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Model Satisfaction: Exercises (7.2)

s ⊨ 𝛟 ⇔ all π starting at s, π ⊨ 𝛟

Exercise: What if we change the LHS to s2?

s0 ⊨ (p ∨ r) U (p ∧ r)

s0 ⊨ (p ∨ r) W (p ∧ r)

s0 ⊨ (p ∧ r) R (p ∨ r)
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Lecture 21 - March 31

Program Verification

Weakest Precond: Predicate Transformer
wp Rules: Assignments, Conditionals



Announcements/Reminders

• WrittenTest2 result released
• Lab4 released
• Bonus opportunity: Final Course Evaluation
• Office Hour this week: 3pm on Mon, Tue, Wed, Thu
• TA contact information (on-demand for labs) on eClass



Stronger vs. Weaker Assertions: Pre- vs. Post-Conditions



Program Correctness: Example (1)



Program Correctness: Example (2)



Hoare Triple: Syntax and Semantics



Hoare Triple as a Predicate

Q
S

Rwp(S, R)



Q

S

R

wp(S, R)

Hoare Triple: Incorrect Program



Program Correctness: Revisiting Example (1)

Q

S

R

wp(S, R)



Program Correctness: Revisiting Example (2)

Q
S

Rwp(S, R)



Expressing Pre-State vs. Post-State Values



Rules of Weakest Precondition: Assignment

     x := e

e.g. x := x + 1

R
e.g. x > 0

wp??



Correctness of Programs: Assignment (1)



Correctness of Programs: Assignment (2)



Rules of Weakest Precondition: Conditionals

wp(if B then S1 else S2 end, R)



Correctness of Programs: Conditionals

Is this program correct?



Lecture 22 - April 2

Program Verification

wp rule: Sequential Composition
Loop Invariant vs. Loop Variant
Correctness Conditions of Loops



Announcements/Reminders

• Exam guide released
• Some example questions to be released by April 7
• WrittenTest2 result released
• Lab4 released
• Bonus opportunity: Final Course Evaluation
• Office Hour this week: 3pm on Wed, Thu
• TA contact information (on-demand for labs) on eClass



wp Calculation for Sequential Composition



Correctness of Programs: Sequential Composition



Correctness of Loops

{ Q }
  Sinit

  while ( B ) {
    Sbody

  }
{ R }

init It. 
1

It. 
2 Fina

l It
.

init It. 
1

It. 
2 Fina

l It
.



Contracts of Loops
Syntax

Runtime Checks



Contracts of Loops: Example

Runtime Checks

Specification

Assume: Q and R are true

end of iteration i I Vpre BVpost



Contracts of Loops: Violations

invariant: 1 <= i <= 5
variant: 5 - i

Runtime Checks

Specification

Assume: Q and R are true



Contracts of Loops: Visualization



Correct Loops: Proof Obligations



Correct Loops: Proof Obligations

Specification

Example






